The Molecular Chaperone GRP78/BiP as a Therapeutic Target for Neurodegenerative Disorders: A Mini Review.

نویسندگان

  • Marina S Gorbatyuk
  • Oleg S Gorbatyuk
چکیده

The glucose regulated protein 78 (GRP78), also known as BiP, is the endoplasmatic reticulum (ER) homologue of HSP70, which plays a dual role in the ER by controlling protein folding, in order to prevent aggregation, and by regulating the signaling of the unfolded protein response (UPR). Most neurodegenerative disorders including Parkinson's, Alzheimer's diseases and progressive retinal degeneration are characterized by activation of the UPR and modified expression of GRP78. The expression levels and activity of GRP78 are altered with age raising the question of whether the lack of GRP78 could be a predisposing factor for many neurodegenerative disorders associated with age including PD, Alzheimer and Age-related macular degeneration. Attempts to induce or upregulate GRP78 in animal models of neurodegeneration have recently been made with the help of pharmacological BiP protein Inducer X (BIX) and GRP78 cDNA delivery via adeno-associated virus (AAV) vectors. The results of these studies validate GRP78 as a new therapeutic target for treatments of forebrain ischemia, Parkinson disease and retinal degeneration. These data, together with the results from age-related studies, highlight the importance for developing drugs to induce elevation of endogenous GRP78 in order to increase cellular survival and extend functional longevity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Molecular Chaperone GRP78/BiP in the Development of Chemoresistance: Mechanism and Possible Treatment

Treatment of several types of cancer such as lung, breast, prostate, and pancreas has shown notable progresses in the past decades. However, after an initial response, tumors eventually became resistant to chemotherapy. This phenomenon, known as chemoresistance, accounts for the death of most cancer patients. Several studies in patients refractory to therapy have revealed the upregulation of th...

متن کامل

The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo

Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis ...

متن کامل

Activation of PERK Signaling Attenuates Aβ-Mediated ER Stress

Alzheimer's disease (AD) is characterized by the deposition of aggregated beta-amyloid (Abeta), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in ...

متن کامل

La3+ binds to BiP/GRP78 and induces unfolded protein response in HepG2 cells.

The effects of La3+ on the unfolded protein response signaling pathways were investigated in human hepatoblastoma HepG2 cells. Our data showed that La3+ could induce unfolded protein response in HepG2 cells, including a significant increase of BiP/GRP78 level, which is an important ER residential chaperone and an ER stress hallmark, in a concentration and time-dependent manner, UPR transducer I...

متن کامل

Analysis in vivo of GRP78-BiP/substrate interactions and their role in induction of the GRP78-BiP gene.

The endoplasmic reticulum (ER)-localized chaperone protein, GRP78-BiP, is involved in the folding and oligomerization of secreted and membrane proteins, including the simian virus 5 hemagglutinin-neuraminidase (HN) glycoprotein. To understand this interaction better, we have constructed a series of HN mutants in which specific portions of the extracytoplasmic domain have been deleted. Analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of genetic syndromes & gene therapy

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2013